

Acoustics Overview and Aerospace Test Systems

A. W. Mayne, III

October 14, 2015 Huntsville, AL

INTRODUCTION

What We Will Cover

- Basic Acoustic Concepts
- High-Intensity Acoustic Test Systems for Aerospace Applications
- Underwater Acoustic Systems for Ship and Submarine Applications

A Few Acoustic Projects I Have Worked On

REVERBERATION CHAMBER FOR TESTING SPACECRAFT

Courtesy of INPE, Brazil)

HIGH-FREQUENCY GAS JET NOISE SOURCE

10 HZ HORN AND NOISE SOURCE

Army's Mobile Acoustic Source stretches 56 ft. long, with a mouth 8 ft. wide.

4

BASIC ACOUSTIC CONCEPTS

Acoustics in General

- An oscillating pressure disturbance that moves through a medium.
- Requires a medium: gas, liquid, solid, plasma. Here, we will discuss small amplitude (linear), ideal gas acoustics.
- The disturbance travels in waves through the medium at a speed characteristic of the medium (speed of sound).
- Like all waves, acoustic waves have amplitude, frequency, and wavelength.
- Some acoustic disturbances can be perceived as sound, and some cannot.

Speed of Sound

- The speed at which an acoustic disturbance travels through a medium (ft/s, m/s, etc.)
- Typically given the symbol "c"
- In an ideal gas, the speed of sound is proportional to the square root of the absolute temperature of the gas.
- Convenient formulas for the speed of sound in *air:*
 - $c = 49 * T^{1/2}$ $c = 20 * T^{1/2}$ T in degrees R, c in ft/s
 T in degrees K, c in m/s

Sound Pressure

• The varying pressure in an acoustic wave, measured from the ambient, undisturbed pressure

8

• Measured as pressure (psi, Pa, etc.)

RMS Sound Pressure

- Root-Mean-Square (RMS) amplitude is a measure of the average sound pressure of the acoustic wave (psi, Pa, etc.)
- For a sine wave, $P_{rms} = P_{peak} / \sqrt{2}$

(100 Hz, 92 dB)

Time (s)

Wavelength

- The distance from one point on an acoustic wave to the corresponding point on the following wave (feet, meters, etc.)
- Typically given the symbol *lambda*, "λ"

(100 Hz, 92 dB)

Frequency

- The number of wave cycles occurring at a point in one second
- Typically given the symbol "f"
- Measured in cycles per second (cps), referred to as Hertz (Hz)

(100 Hz, 92 dB)

Time (s)

Wavelength-Frequency Relationship

• Wavelength and frequency are inversely proportional:

c = f * λ

• Here are some examples:

Frequency	Gas	Temp.	Speed of Sound	Wavelength
f		Т	c = (γRT)^0.5	$\lambda = c/f$
(Hz)		(C)	(m/s)	(m)
100	air	20	343	3.433
100	H2	20	1305	13.052
15000	air	20	343	0.023

Sound Pressure Level (L_P or SPL)

- SPL = $20*Log_{10}(P_{RMS}/P_{REF})$
 - Measured in decibels, stated as "dB"
 - P_{REF} = 20 microPa in gases
 - Other reference values are used for the SPL in water, for intensity level, etc.
- Be careful to use the correct reference value.
- "85 dB ref. 20 microPa" is a complete statement of the sound pressure level, but it will generally be stated simply as "85 dB".

SPL Spectrum

(Space Shuttle STS-1 Launch Spectrum, T-6 s to T+12 s)

Microphones for Test and Measurement

- Microphones are used to measure acoustic pressure fluctuations and convert them into an electrical signal.
- Common microphones for test and measurement applications: condenser and piezoelectric.
- Microphones are meant for different sound fields: pressure field, free field, random-incidence field.
- Microphones must be calibrated.
- When choosing a microphone, talk to the vendors.
- Know your requirements: sound field, environment, SPL range and tolerance, frequency range, cable length, standards, existing instrumentation.

Array of Microphones in a Reverberant Test Chamber

MICROPHONE & CLAMP SUPPORT

TRIPOD

COAXIAL MICROPHONE CABLES LEAD OUTSIDE THE TEST CHAMBER TO THE MICROPHONE POWER SUPPLY, SPECTRUM CONTROLLER, & DATA ACQUISITION SYSTEM

Reflection and Boundary Absorption

- Sound is reflected from surfaces like a wall
- The reflected intensity, I_r, is reduced according to the absorption coefficient, "α" (alpha)
- α depends on the material, surface, angle, and frequency
- 0 ≤ α ≤ 1

17

Absorption in Air (or Other Gases)

- An acoustic wave will be attenuated (weakened) as it travels through air.
- Absorption in air is primarily a function of:
 - Frequency
 - Temperature
 - Relative humidity
 - Distance traveled
- Absorption in air is most important at high frequencies (f > about 1000 Hz).

Examples of Absorption in Air (Gas Absorption Only)

Nonlinear Behavior

- Most of the everyday noise you will run into can be analyzed under the assumption of linear behavior:
 - Human voice
 - Factory floor
 - Automobile
 - Music from loudspeakers
 - Etc.
- However, nonlinear acoustic behavior can be important, such as the distortion of an acoustic wave at very high sound pressures.

Distortion of a High-Intensity Sine Wave (165 dB)

Fig.2 315 Hz High Intensity Sound Pressure Wave as a Function of Propagation Distance

(Miller, "Development of a Wide-Band, Ten Kilowatt Noise Source," IEST Proceedings, 1967)

HIGH-INTENSITY ACOUSTIC TEST SYSTEMS FOR AEROSPACE APPLICATIONS

Acoustic Test Levels for Rockets and Aircraft (A/C)

Vehicle	Location	OASPL (dB)
Transport A/C ¹	Away from jet exhausts	130.0
Transport A/C ¹	Internal, close to jet exhausts	140.0
Delta IV Rocket ²	Inside 5-m payload fairing (Acceptance Level)	140.6
High-Performance A/C ¹	Away from jet exhausts	145.0
Delta IV Rocket ²	Inside 5-m composite payload fairing (Qualification Level)	146.1
Med-Performance A/C ¹	Air-to-air missile on A/C	150.0
Hi-Performance A/C ¹	Inside nose cone	160.0
Hi-Performance A/C ¹	Air-to-air missile on A/C	165.0

1. MIL-STD-810G, "Environmental Engineering Considerations and Laboratory Tests," Oct., 2008.

2. United Launch Alliance, "Delta IV Payload Planners Guide," Sep., 2007.

Acoustic Test Requirements

Government Standard: MIL-STD-810G (Ref. Method 515.6)

Commercial Standard: Delta IV Payload Planners Guide (Ref. Section 4.2.3.3)

Common High-Intensity Acoustic Test Facilities

RATF: Reverberant Acoustic Test Facility

- Closed, reflective room or cavity for the sound field
- Approximates a diffuse field
- Waves at all frequencies, from all directions
- **PWT: Progressive Wave Tube**
 - Duct of constant cross-section
 - Progressive (flat) waves moving in only one direction
- DFAT: Direct Field Acoustic Test
 - Cylindrical bank of loudspeakers surround a test article
 - Direct acoustic wave impingement (mostly normal)

Large RATFs

(Courtesy of INPE, Brazil)

- Large RATF for testing spacecraft
- Typical of large RATFs built outside the US in the last 25 years
- 1213 m³ (42,800 ft³)
- 100 kW of acoustic source power
- Nitrogen vaporization system

Electropneumatic Noise Sources & Horns

Array of Loudspeakers

⁽Courtesy of Orbital Sciences Corporation)

- Direct Field Acoustic Test (DFAT)
- An array of loudspeakers surrounds the test article
- Speakers only; no electropneumatic noise sources

UNDERWATER ACOUSTIC SYSTEMS FOR SHIP AND SUBMARINE APPLICATIONS

Some Types of Underwater Systems

WIDE-BAND CALIBRATION SOURCE

Moving-Coil Underwater Projectors (Hydrosounders)

- UW350 Type A low frequency projector
- 20 Hz to 20 kHz
- Max SPL: 170 dB re 1 µPa @ 1 m
- Amplifier drive: 1 kVA
- Weight: 100 kg

- UW600 very low frequency projector
- 4 Hz to 600 Hz
- Max SPL: 188 dB re 1 µPa @ 1 m
- Amplifier drive: 25 kVA
- Weight: 1310 kg

HYDROPHONE

Towed Systems (Towfish) 82-55-540-6232 KOREA D SubTrack PRESSURE **HIGH-FREQUENCY VESSEL SPHERICAL** TOWING TAIL FIN -**TRANSDUCERS ATTACHMENT** UW350 SECTION A-A **MONITOR**

DEPRESSER

33

Calibration Systems

- Statically deployed
- 20 Hz 100 kHz
- SPL up to 200 dB
- Omnidirectional beam patterns
- In service in the United Kingdom and in Korea
- Containerized system for easy deployment

Thank you for listening.

Shaping the Future of Aerospace

Questions?